题目内容
如图是4×4正方形网络,其中已有3个小方格涂成了黑色。现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有________个.
![]()
为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h) | 0 | 1 | 2 | 3 | … |
油箱剩余油量Q(L) | 100 | 94 | 88 | 82 | … |
①根据上表的数据,请你写出Q与t的关系式;
②汽车行驶5h后,油箱中的剩余油量是多少?
③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远?
①Q=50﹣8t;②汽车行驶5h后,油箱中的剩余油量是10L;③该车最多能行驶625km. 【解析】试题分析:①由表格可知,开始油箱中的油为50L,每行驶1小时,油量减少8L,据此可得t与Q的关系式; ②求汽车行驶5h后,油箱中的剩余油量即是求当t=5时,Q的值; ③贮满50L汽油的汽车,理论上最多能行驶几小时即是求当Q=0时,t的值. 试题解析①Q与t的关系式为:Q=50...研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球.怎样估算不同颜色球的数量?
操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次随机摸出一个球,放回盒中,再继续.
活动结果:摸球试验一共做了50次,统计结果如下表:
球的颜色 | 无记号 | 有记号 | ||
红色 | 黄色 | 红色 | 黄色 | |
摸到的次数 | 18 | 28 | 2 | 2 |
推测计算.由上述的摸球试验可推算:
(1)盒中红球、黄球各占总球数的百分比是多少?
(2)盒中有红球多少个?
一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是( )
A. 0.1 B. 0.2 C. 0.3 D. 0.4
如图,关于虚线成轴对称的有( )个.
![]()
A. 1 B. 2 C. 3 D. 4
若a、b、c为整数,且|a﹣b|19+|c﹣a|95=1,则|c﹣a|+|a﹣b|+|b﹣c|=______.
如图是一个四棱柱和一个六棱锥,它们各有12条棱.
![]()
下列棱柱中和九棱锥的棱数相等的是( )
A. 五棱柱 B. 六棱柱 C. 七棱柱 D. 八棱柱
如图,已知在△ABC中,∠C=90°,AB的垂直平分线MN交BC于点D.
![]()
(1)如果∠CAD=20°,求∠B的度数;
(2)如果∠CAB=50°,求∠CAD的度数;
(3)如果∠CAD:∠DAB=1:2,求∠CAB的度数.