题目内容

如图是4×4正方形网络,其中已有3个小方格涂成了黑色。现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有________个.

4 【解析】试题分析:根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.如图所示,有4个位置使之成为轴对称图形. 故答案为:4.
练习册系列答案
相关题目

研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球.怎样估算不同颜色球的数量?

操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球试验.摸球试验的要求:先搅拌均匀,每次随机摸出一个球,放回盒中,再继续.

活动结果:摸球试验一共做了50次,统计结果如下表:

球的颜色

无记号

有记号

红色

黄色

红色

黄色

摸到的次数

18

28

2

2

推测计算.由上述的摸球试验可推算:

(1)盒中红球、黄球各占总球数的百分比是多少?

(2)盒中有红球多少个?

(1) 红球约占40%,黄球约占60%;(2) 40个. 【解析】分析:(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球. 本题解析: (1)由题意可知,50次摸球试验中,出现红球20次,黄球30次,...

一次数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是(  )

A. 0.1 B. 0.2 C. 0.3 D. 0.4

A 【解析】分析:由题意先求出第5组的频数,再由所求频数除以50即可得到第5组的频率. 详解: ∵总人数为50,第1~4组的频数分别为12、10、15、8, ∴第5组的频数为:50-12-10-15-8=5, ∴第5组的频率=5÷50=0.1. 故选A.

如图,关于虚线成轴对称的有(  )个.

A. 1 B. 2 C. 3 D. 4

B 【解析】①关于虚线不成轴对称,②关于虚线不成轴对称,③关于虚线不成轴对称,④关于虚线成轴对称, 故选B.

若a、b、c为整数,且|a﹣b|19+|c﹣a|95=1,则|c﹣a|+|a﹣b|+|b﹣c|=______.

2 【解析】分两种情况: ①|a-b|=1,|c-a|=0,则c=a, ∴|c-a|+|a-b|+|b-c|=0+|a-b|+|b-a|=0+1+1=2; ②|a-b|=0,|c-a|=1,则a=b, |c-a|+|a-b|+|b-c|=|c-a|+0+|a-c|=1+0+1=2, ∴|c-a|+|a-b|+|b-c|=2. 故答案为:2.

如图是一个四棱柱和一个六棱锥,它们各有12条棱.

下列棱柱中和九棱锥的棱数相等的是(  )

A. 五棱柱 B. 六棱柱 C. 七棱柱 D. 八棱柱

B 【解析】∵九棱锥有18条棱,五棱柱有15条棱, 六棱柱有18条棱,七棱柱有21条棱,八棱柱有24条棱, ∴六棱柱的棱数与九棱锥的棱数相等.

如图,已知在△ABC中,∠C=90°,AB的垂直平分线MN交BC于点D.

(1)如果∠CAD=20°,求∠B的度数;

(2)如果∠CAB=50°,求∠CAD的度数;

(3)如果∠CAD:∠DAB=1:2,求∠CAB的度数.

(1)∠B=35°;(2)∠CAD=10°;(3)∠CAB=54°. 【解析】试题分析:(1)根据直角三角形的性质求出∠ADC=70°,根据线段的垂直平分线的性质得到DA=DB,计算即可; (2)根据直角三角形的性质求出∠B的度数,根据线段的垂直平分线的性质得到DA=DB,计算即可; (3)设∠CAD=x,根据题意列出方程,解方程即可. 试题解析:(1)∵∠C=90°,∠C...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网