题目内容

23、如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP,BE⊥CP,垂足分别为D,E,已知DC=2,求BE的长.
分析:已知了CD的长,求BE的长,可通过证明三角形BEC和ACD全等来得出.这两个三角形中已知的条件只有一组直角,根据∠ABC=∠BAC=45°,因此∠ACB=90°,AC=BC,我们发现∠DAC和∠BCE同为∠ACD的余角,因此∠DAC=∠BCE,这样就构成了三角形ACD和BCE全等的条件,两三角形全等.这样就能求出BE、CD的关系就能得出BE的长.
解答:解:∵∠ABC=∠BAC=45°
∴∠ACB=90°,AC=BC
∵∠DAC+∠ACD=90°,∠BCE+∠ACD=90°
∴∠DAC=∠BCE
又∵∠ADC=∠CEB
∴△ACD≌△CEB
∴BE=CD=2.
点评:此题考查简单的线段相等,可以通过全等三角形来证明,等腰直角三角形在直角三角形的题目中经常出现,注意应用等角对等边来解题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网