题目内容
下面四个图形中,线段BE是△ABC的高的图是( )
A. B. C. D.
数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础。小白在草稿纸上画了一条数轴进行操作探究:
操作一:
(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与 表示的点重合;
操作二:
(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题:
①表示的点与数 表示的点重合;
②若数轴上A、B两点之间距离为8(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是__________________;
操作三:
(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.
如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
A. AB=AD B. AC平分∠BCD C. AB=BD D. △BEC≌△DEC
在△ABC中,∠A = 40º,∠B = 80º,则∠C的度数为_______________.
下列图形不具有稳定性的是( )
化简下列各式
(1)﹣5a2(3ab2﹣6a3)
(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.
等腰三角形的一个角是80°,则它的底角是__.
随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2013年底拥有家庭轿车64辆,2015年底家庭轿车的拥有量达到100辆
(1) 若该小区2013年底到2016年底家庭轿车拥有量的年平均增长率都相同,求该小区到2016年底家庭轿车将达到多少辆?
(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位,距测算,建造费用分别为室内车位5000元一个,露天车位1000元一个.考虑到实际因数,计划露天车位的数量不少于室内车位的2倍,且室内的车位不少于19个,求该小区最多可建两种车位各多少个?试写出所有可能的方案
若A(3,y1),B(-2,y2),C(-1,y3)三点都在函数y=-的图象上,则y1,y2,y3的大小关系是( ).
A. y1<y2<y3 B. y1>y2>y3
C. y1=y2=y3 D. y1<y3<y2