题目内容

如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:

①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+

其中正确的序号是 (把你认为正确的都填上).

解答:

解:∵四边形ABCD是正方形,

∴AB=AD,

∵△AEF是等边三角形,

∴AE=AF,

∵在Rt△ABE和Rt△ADF中,

∴Rt△ABE≌Rt△ADF(HL),

∴BE=DF,

∵BC=DC,

∴BC﹣BE=CD﹣DF,

∴CE=CF,

∴①说法正确;

∵CE=CF,

∴△ECF是等腰直角三角形,

∴∠CEF=45°,

∵∠AEF=60°,

∴∠AEB=75°,

∴②说法正确;

如图,连接AC,交EF于G点,

∴AC⊥EF,且AC平分EF,

∵∠CAD≠∠DAF,

∴DF≠FG,

∴BE+DF≠EF,

∴③说法错误;

∵EF=2,

∴CE=CF=

设正方形的边长为a,

在Rt△ADF中,

a2+(a﹣2=4,

解得a=

则a2=2+

S正方形ABCD=2+

④说法正确,

故答案为①②④.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网