题目内容
已知(5,-1)是双曲线上的一点,则下列各点中不在该图象上的是( )
A.(,-15) B.(5,1) C.(-1,5) D.(10,)
如图1,四边形ABCD中,AD∥BC,∠A=90°,BD⊥CD,AD=,BC=5,动点P从点D出发,以1cm/s的速度沿DB方向运动,动点Q也从点D出发,以/的速度沿DC方向运动,P,Q两点同时出发,当点Q到达点C时停止运动,点P也随之停止,设运动时间为(>0).
(1)求线段DB的长;
(2)请判断PQ与BC的位置关系,并加以证明;
(3)伴随P,Q两点的运动,将△DPQ绕点P旋转,得到△PMN,点M落在线段PQ上,若△PMN
与△DBC的重叠部分的图形周长为y,
①请求出y与之间的函数关系式,并指出自变量的取值范围;
②求出当4<y≤5时的取值范围.
如图,BC是O的直径,P是CB延长线上的一点,PA切O于点A,如果PA=,PB=1,
那么∠APC等于 ( )
(A)15° (B)30° (C)45° (D)60°
如图,△ABC中,∠A=60°,BD⊥AC于点D,CE⊥AB于点E,点P为BC的中点,连接DE、PD、PE,下列结论中正确的是 .
①PD=PE;
②=;
③△PDE为等边三角形;
④当∠ABC=45°,BE=PC
将抛物线的图象向右平移2个单位,再向下平移3个单位,得到的抛物线是( )
A. B.
C. D.
如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D.求∠DBC的度数.
如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了______米.
如图,△ABC中边AB的垂直平分线DE分别交BC、AB于点D、E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是 .
如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.
请根据从上面材料中所得到的信息解答下列问题:
(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=,则BC= ;
(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长= .
(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= .
(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.