题目内容
一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )
A. 0.5 B. 1 C. 2 D. 4
将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.
(2)求取出的两张卡片上的数字之和为偶数的概率P.
已知正比例函数的图象与反比例函数为常数,的图象有一个交点的横坐标是,则________.
我们知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,这一种方法称为配方法,利用配方法请解以下各题:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:当a取不同的实数时在得到的代数式a2﹣4a的值中是否存在最小值?请说明理由.
(3)应用:如图.已知线段AB=6,M是AB上的一个动点,设AM=x,以AM为一边作正方形AMND,再以MB、MN为一组邻边作长方形MBCN.问:当点M在AB上运动时,长方形MBCN的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由.
已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.
已知的半径为,点是内一点,且,过作互相垂直的两条弦、,则四边形面积的最大值为( )
A. 4 B. 5 C. 6 D. 7
如图,某农场老板准备建造一个矩形羊圈,他打算让矩形羊圈的一面完全靠着墙,墙可利用的长度为,另外三面用长度为的篱笆围成(篱笆正好要全部用完,且不考虑接头的部分)
若要使矩形羊圈的面积为,则垂直于墙的一边长为多少米?
农场老板又想将羊圈的面积重新建造成面积为,从而可以养更多的羊,请聪明的你告诉他:他的这个想法能实现吗?为什么?
解方程得方程的根为( )
A. , B. ,
C. , D. ,
用尺规作图,在△ABC中作一点P,使点P到AB,AC两边的距离相等,且PA=PB.