搜索
题目内容
12、如图,A和A′是关于直线MN对称的对称点,那么AA′
⊥
MN,AO′
=
AO.
试题答案
相关练习册答案
分析:
根据轴对称的性质,对称轴垂直平分两对称点连线可得出答案.
解答:
解:由轴对称的性质可得:AA′⊥MN,AO′=AO.
点评:
本题考查轴对称的性质,掌握对称轴垂直平分两对称点连线是解决本题的关键.
练习册系列答案
本真语文踩点夺分系列答案
启东中学中考总复习系列答案
中学英才教程系列答案
教学大典 系列答案
学考A加卷中考考点优化分类系列答案
发散思维新课堂系列答案
明日之星课时优化作业系列答案
同步首选全练全测系列答案
学效评估同步练习册系列答案
高中新课标同步用书全优课堂系列答案
相关题目
如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,P
D切⊙B于点D,已知⊙A的半径为2,⊙B的半径为1,AB=5.
(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域;
(2)如果PC=PD,求PB的长;
(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论.
(2013•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:
(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
AO
AD
=
2
3
;
(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足
AO
AD
=
2
3
,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S
四边形BCHG
,S
△AGH
分别表示四边形BCHG和△AGH的面积,试探究
S
四边形BCHG
S
△AGH
的最大值.
如图,⊙A和⊙B是外离的两圆,两圆的连心线分别交⊙A、⊙B于E、F,点P是线段AB上的一动点(点P不与E、F重合),PC切⊙A于点C,P
D切⊙B于点D,已知⊙A的半径为2,⊙B的半径为1,AB=5.
(1)如设线段BP的长为x,线段CP的长为y,求y关于x的函数解析式,并写出函数的定义域;
(2)如果PC=PD,求PB的长;
(3)如果PC=2PD,判断此时直线CP与⊙B的位置关系,证明你的结论.
如图,A和A′是关于直线MN对称的对称点,那么AA′________MN,A′O________AO.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案