题目内容
如图是由八个相同小正方体组合而成的几何体,则其俯视图是( )
A. B. C. D.
(1)计算:
(2)解不等式组:
如图,在Rt△ABC中,∠ACB = 90°,BC = 2.将△ABC绕顶点C逆时针旋转得到△使点落在AC边上.设M是的中点,连接BM,CM,则△BCM的面积为( )
A. 1 B. 2 C. 3 D. 4
用配方法解方程x2﹣6x﹣1=0,经过配方后得到的方程式_____.
如果关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是( )
A. a>﹣ B. a≥﹣ C. a≥﹣且a≠0 D. a>且a≠0
阅读:所谓勾股数就是满足方程x2+y2=z2的正整数解,即满足勾股定理的三个正整数构成的一组数.我国古代数学专著《九章算术》一书,在世界上第一次给出该方程的解为:,y=mn,,其中m>n>0,m、n是互质的奇数.应用:当n=5时,求一边长为12的直角三角形另两边的长.
如图,双曲线y= (x>0)经过A、B两点,若点A的横坐标为1,∠OAB=90°,且OA=AB,则k的值为________.
根据阅读材料,解决问题.
数n是一个三位数,各数位上的数字互不相同,且都不为零,从它各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数n的“生成数”.数n的所有“生成数”之和与22的商记为G(n),例如n=123,它的六个“生成数”是12,13,21,23,31,32,这六个“生成数”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.
(1)计算:G(125),G(746);
(2)数s,t是两个三位数,它们都有“生成数”,a,1,4分别是s的百位、十位、个位上的数字,x,y,6分别是t的百位、十位、个位上的数字,规定:k=,若G(s)•G(t)=84,求k的最小值.
现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是( )
A. 50 B. 60 C. 70 D. 80