题目内容
cos30°的值为 ( )
A. B. C. D.
如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1使它与△ABC的相似比为2;则点B的对应点B1的坐标是多少?
下列语句正确的是 ( )
A. 的平方根是±8 B. 是的平方根
C. =±3 D. ( -2 )2的平方根是 -2
已知直角三角形两直角边长分别是6和8,则其外接圆的半径长是 .
如图,OA、OB是⊙O的半径,点C在⊙O上,连接AC、BC,若∠A=20°,∠B=70°,
则∠ACB的度数为( )
A. 50° B. 55° C. 60° D. 65°
(本题满分10分)沿海开发公司准备投资开发A、B两种新产品,通过市场调研发现:
(1)若单独投资A种产品,则所获利润yA(万元)与投资金额x(万元)之间满足正比例函数关系:yA=kx;
(2)若单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间满足二次函数关系:yB=ax2+bx.
(3)根据公司信息部的报告,yA,yB(万元)与投资金额x(万元)的部分对应值如下表所示:
(1)填空:yA= ;yB= ;
(2)若公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),试写出W与某种产品的投资金额x(万元)之间的函数关系式;
(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?
如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,-2)、B(4,-1)、C(3,-3).
(1)画出将△ABC向左平移5个单位,再向上平移3个单位后的△A1B1C1,并写出点B的对应点B1的坐标____________;
(2)以原点O为位似中心,在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的相似比为2:1,并写出点B1的对应点B2的坐标____________;
(3)若△A1B1C1内部任意一点P1 的坐标为(a-5,b+3),直接写出经过(2)的变化后点P1的对应点P2的坐标(用含a、b的代数式表示).P2的坐标是____________.
对于一组统计数据:3,3,6,3,5,下列说法中错误的是( )
A. 中位数是6 B. 众数是3 C. 平均数是4 D. 方差是1.6
如图,已知口ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=45°,则∠DA′E′的大小为( )
A. 170° B. 165° C. 160° D. 155°