题目内容
【题目】如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到∠CAH=37°,∠DBH=60°,AB=10m,求GH的长.(参考数据:tan37°≈0.75,
≈1.732,结果精确到0.1m) ![]()
【答案】解:延长CD交AH于点E,如图所示:根据题意得:CE⊥AH,
设DE=xm,则CE=(x+2)m,
在Rt△AEC和Rt△BED中,tan37°=
,tan60°=
,
∴AE=
,BE=
,
∵AE﹣BE=AB,
∴
﹣
=10,
即
﹣
=10,
解得:x≈5.8,
∴DE=5.8m,
∴GH=CE=CD+DE=2m+5.8m=7.8m.
答:GH的长为7.8m.
![]()
【解析】首先构造直角三角形,设DE=xm,则CE=(x+2)m,由三角函数得出AE和BE,由AE=BE=AB得出方程,解方程求出DE,即可得出GH的长.
练习册系列答案
相关题目