题目内容
如图,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD的面积.
菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标为_____.
如图1,已知射线CB∥OA,∠C=∠OAB,
(1)求证:AB∥OC;
(2)如图2,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
①当∠C=110°时,求∠EOB的度数.
②若平行移动AB,那么∠OBC :∠OFC的值是否随之发生变化?若变化,找出变
化规律;若不变,求出这个比值.
下列命题是假命题的是( )
A. 对顶角相等 B. 两直线平行,同旁内角相等
C. 平行于同一条直线的两直线平行 D. 同位角相等,两直线平行
卡菲尔德(Garfeild,1881年任美国第二十届总统)利用下图证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现在请你尝试他的证明过程证明勾股定理.(四边形ABDE为直角梯形,∠B和∠D为直角)
在△ABC中,∠C=90°,若c=10,a:b=3:4,则=_____;
高为3,底边长为8的等腰三角形腰长为 ( ).
(A)3 (B)4 (C)5 (D)6
因式分【解析】______.
如图,在△ABC中,∠C=90°,AC=8,BC=6。P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N设AP=x。
(1)在△ABC中,AB= ;
(2)当x= 时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明。