题目内容

如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为(     )

A.   B.   C.5   D.

【考点】直角三角形斜边上的中线;三角形三边关系;勾股定理;矩形的性质.

【专题】代数综合题.

【分析】取AB的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、D、E三点共线时,点D到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.

【解答】解:如图,取AB的中点E,连接OE、DE、OD,

∵OD≤OE+DE,

∴当O、D、E三点共线时,点D到点O的距离最大,

此时,∵AB=2,BC=1,

∴OE=AE=AB=1,

DE=

∴OD的最大值为:

故选A.

【点评】本题考查了直角三角形斜边上的中线等于斜边的一半得到性质,三角形的三边关系,矩形的性质,勾股定理,根据三角形的三边关系判断出点O、E、D三点共线时,点D到点O的距离最大是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网