题目内容


如图,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论: ①∠APO+∠DCO=30°;②△OPC是等边三角形;③AC=AO+AP;④S△ABC=S四边形AOCP,其中正确的个数是(  ) 

A.1                   B.2            C.3            D.4


D

【解析】①利用等边对等角,即可证得∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此可以求解;②证明∠POC=60°,且OP=OC,即可证得△OPC是等边三角形;③首先证明,△POA≌△CPE,则AO=CE,AC=AE+CE=AO+AP;④过带你C做CH⊥AB于H,根据S四边形AOCP=S△ACP+S△AOC,利用三角形的面积公式即可求解.所以4个结论都正确.

故选D.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网