题目内容

如图,以矩形ABCD的边AB为直径作圆,过C作直线CP切圆于点P,过点P作PQ⊥AB于Q,PQ分别精英家教网交CD、AC于E、F,记AQ=m,QB=n(m>n).
(1)用含m、n的代数式表示PC的长;
(2)求证:直线AC平分线段PQ.
分析:(1)连接PA、PB,由圆周角定理可以得知∠APB=90°利用三角形相似表示出PQ,在直角三角形PEC中利用勾股定理就可以表示出PC.
(2)由PQ⊥AB及四边形ABCD是矩形可知PQ∥BC,而得到三角形相似证明FQ=
1
2
PQ,从而使问题得到解决.
解答:精英家教网(1)解:连接PA、PB
∵AB是直径,
∴∠APB=90°
设CP=x,则CB=CP=x
∵PQ⊥AB
∴△APQ∽△PBQ
∴PQ2=AQ•QB
∴PQ=
mn

∴PE=
mn
-x
,又CE=n
在Rt△PCE中有PC2=PE2+EC2
∴x2=(
mn
-x)
2
+n2

∴x=
(m+n)
mn
2m


(2)证明:∵PQ∥CB
FQ
CB
=
AQ
AB
=
m
m+n

∴FQ=
m
m+n
•CB=
m
m+n
(m+n)
mn
2m
=
mn
2

∴FQ=
1
2
PQ
∴直线AC平分线段PQ.
点评:本题考查了切线的性质,勾股定理,矩形的性质,平行线分线段成比例定理及相似三角形的判定及性质的运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网