题目内容


设a,b是方程x2+x﹣2009=0的两个实数根,则a2+2a+b的值为      


2008 

考点: 根与系数的关系;一元二次方程的解.

分析: 根据根与系数的关系,可先求出a+b的值,然后代入所求代数式,又因为a是方程x2+x﹣2009=0的根,把a代入方程可求出a2+a的值,再代入所求代数式可求值.

解答: 解:根据题意得a+b=﹣1,ab=﹣2009,

∴a2+2a+b=a2+a+a+b=a2+a﹣1,

又∵a是x2+x﹣2009=0的根,

∴a2+a﹣2009=0,

∴a2+a=2009,

∴a2+2a+b=2009﹣1=2008.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网