题目内容

如图,⊙O是Rt△ABC的外接圆,点O在AB上,BD⊥AB,点B是垂足,OD∥AC,连接CD.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为10cm,∠A=60°,求CD的长.

【答案】分析:(1)要证CD是⊙O的切线,只要连接OC,再证OC⊥CD即可.
(2)根据切线的性质可得CD=BD,根据勾股定理可得CD的长.
解答:证明:(1)连接CO,
∵OD∥AC,
∴∠COD=∠ACO,∠CAO=∠DOB.
∵∠ACO=∠CAO,
∴∠COD=∠DOB.
又OD=OD,OC=OB.
∴△COD≌△BOD.
∴∠OCD=∠OBD=90°.
∴OC⊥CD,即CD是⊙O的切线.

(2)由(1)可得,△COD≌△BOD,得CD=BD,
∵BD⊥AB,
∴∠OBD=90°.
∵OD∥AC,
∴∠DOB=∠A=60°.
∴∠ODB=30°.
∴CD=BD=10
点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了切线的性质及勾股定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网