题目内容
数据2、5、6、0、6、1、8的中位数和众数分别是( )
A.0和6 B.0和8 C.5和6 D.5和8
单项式与是同类项,则的值是
A.2 B.3 C.4 D.5
不等式组的解集为( )
A.x≥3 B.-3≤x<4 C.-3≤x<2 D.x> 4
一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA与边FE叠合,顶点B、C、D在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180 ),如果EF∥AB,那么n的值是 .
方程=1的解是 .
在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.
(1)求抛物线C1,C2的函数表达式;
(2)求A、B两点的坐标;
(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.
如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)
综合与探究
如图,抛物线与轴交于A、B两点(点A在点B的左侧),与轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ,过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E.连接PD,与BC交于点F.设点P的运动时间为秒().
(1)求直线BC的函数表达式.
(2)①直接写出P、D两点的坐标(用含的代数式表示,结果需化简).
②在点P、Q运动的过程中,当PQ=PD时,求的值.
(3)试探究在点P、Q运动的过程中,是否存在某一时刻,使得点F为PD的中点.若存在,请直接写出此时的值与点F的坐标;若不存在,请说明理由.
若分式的值为零,则x的值是( )
A.1 B.﹣1 C.±1 D.2