题目内容

23、小明将连续的奇数1,3,5,7,9,…,排成如图所示的数阵,用一个矩形框框住其中的9个数,如图所示.
(1)矩形阴影框中的9个数的和与中间一个数存在怎样的关系?(直接写出笞案)
(2)若将矩形框上下左右移动,这个关系还成立吗?为什么?
分析:(1)将方框内的数字相加等于171,通过计算得出存在的关系.
(2)若将矩形框上下左右移动,可举两个实例证明是否成立.
解答:解:(1)计算阴影框中9个数的和为,3+5+7+17+19+21+31+33+35=171,171÷19=9,
所以,矩形阴影框中的9个数的和是中间一个数的9倍;

(2)假设将矩形框向下移动一个格,则中间的数为33.
则9个数的和为,17+19+21+31+32+33+35+45+47+49=297,297÷33=9,
再假设将矩形框向左移动一个格,则中间的数为17,
则9个数的和为:1+3+5+15+17+19+29+31+33=153,153÷17=9.
所以这个关系还成立.
点评:此题是通过计算得出存在的关系的,也可以通过观察总结出一定的规律进行解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网