题目内容
如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,
(1)求证:△ADN≌△CBM;
(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;
(3)点P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的长度.
(1)求证:△ADN≌△CBM;
(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;
(3)点P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的长度.
(1)证明:由折叠的性质得出∠DAN=∠NAC,∠BCM=∠ACM,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠DAN=∠BCM,
在Rt△ADN和Rt△CBM中,
∵
,
∴△ADN≌△CBM,
(2)连接NE、MF,
∵△ADN≌△CBM,
∴NF=ME,
∵∠NFE=∠MEF,
∴NF∥ME,
∴四边形MFNE是平行四边形,
∵MN与EF不垂直,
∴四边形MFNE不是菱形;
(3)设AC与MN的交点为O,EF=x,作QG⊥PC于G点,
∵AB=4,BC=3,
∴AC=5,
∵AF=CE=BC=3,
∴2AF-EF=AC,即6-x=5,
解得x=1,
∴EF=1,
∴CF=2,
在Rt△CFN中,tan∠DCA=
=
=
,
解得NF=
,
∵OE=OF=
EF=
,
∴在Rt△NFO中,ON2=OF2+NF2,
∴ON=
,
∴MN=2ON=
,
∵PQ∥MN,PN∥MQ,
∴四边形MQPN是平行四边形,
∴MN=PQ=
,
∵PQ=CQ,
∴△PQC是等腰三角形,
∴PG=CG,
在Rt△QPG中,
PG2=PQ2-QG2,即PG=
=1,
∴PC=2PG=2.
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠DAN=∠BCM,
在Rt△ADN和Rt△CBM中,
∵
|
∴△ADN≌△CBM,
(2)连接NE、MF,
∵△ADN≌△CBM,
∴NF=ME,
∵∠NFE=∠MEF,
∴NF∥ME,
∴四边形MFNE是平行四边形,
∵MN与EF不垂直,
∴四边形MFNE不是菱形;
(3)设AC与MN的交点为O,EF=x,作QG⊥PC于G点,
∵AB=4,BC=3,
∴AC=5,
∵AF=CE=BC=3,
∴2AF-EF=AC,即6-x=5,
解得x=1,
∴EF=1,
∴CF=2,
在Rt△CFN中,tan∠DCA=
| NF |
| CF |
| BC |
| AB |
| 3 |
| 4 |
解得NF=
| 3 |
| 2 |
∵OE=OF=
| 1 |
| 2 |
| 1 |
| 2 |
∴在Rt△NFO中,ON2=OF2+NF2,
∴ON=
| ||
| 2 |
∴MN=2ON=
| 10 |
∵PQ∥MN,PN∥MQ,
∴四边形MQPN是平行四边形,
∴MN=PQ=
| 10 |
∵PQ=CQ,
∴△PQC是等腰三角形,
∴PG=CG,
在Rt△QPG中,
PG2=PQ2-QG2,即PG=
| 10-9 |
∴PC=2PG=2.
练习册系列答案
相关题目