题目内容
若一元二次方程x2﹣3x+1=0的两根为x1和x2,则x1+x2= .
如图,在?ABCD中,AB=6,AD=9,∠BAD的平分线交DC的延长线于点E,CE的长为( )
A.2 B.3 C.4 D.2.5
计算:﹣3tan30°+(π﹣3)0﹣()﹣1.
如图,已知抛物线y=x2+bx+c与y轴交于点C,与x轴交于点A、B,且AB=2,抛物线的对称轴为直线x=2;
(1)求抛物线的函数表达式;
(2)如果抛物线的对称轴上存在一点P,使得△APC周长的最小,求此时P点坐标
及△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.(直接写出结果)
解分式方程:.
下列说法不正确的是( )
A.方程x2=x有一根为0
B.方程x2﹣1=0的两根互为相反数
C.方程(x﹣1)2﹣1=0的两根互为相反数
D.方程x2﹣x+2=0无实数根
如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).
(1)求b、c的值;
(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;
(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,正三棱柱的主视图为( )
A. B. C. D.
如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为 .