题目内容
解不等式:1﹣>.
如图,△ABC为等边三角形,D是△ABC内一点,若将△ABD经过一次逆时针旋转后到△ACP的位置,则旋转中心是 ,旋转角等于 °,△ADP是 三角形.
已知一条抛物线过点(3,2)和(0,1),且它的对称轴为直线x=3.试求这条抛物线的解析式.
将二次函数y=2x2﹣8x﹣1化成y=a(x﹣h)2+k的形式,结果为( )
A.y=2(x﹣2)2﹣1 B.y=2(x﹣4)2+32
C.y=2(x﹣2)2﹣9 D.y=2(x﹣4)2﹣33
某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.
(1)本次调查的学生人数为 人;
(2)补全频数分布直方图;
(3)根据图形提供的信息判断,下列结论正确的是 (只填所有正确结论的代号);
A.由图(1)知,学生完成作业所用时间的中位数在第三组内
B.由图(1)知,学生完成作业所用时间的众数在第三组内
C.图(2)中,90~120数据组所在扇形的圆心角为108°
D.图(1)中,落在第五组内数据的频率为0.15
(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?
我们规定[a]表示实数a的整数部分,如[2.35]=2;[π]=3,按此规定[2020﹣]= .
分式有意义,则x的取值范围是( )
A.x>1 B.x≠1 C.x<1 D.一切实数
已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).
如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小立方体,王亮所搭几何体的表面积为 .