题目内容
在平面直角坐标系中已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,求点P的坐标.
如图.下列三个条件:①AB∥CD,②∠B=∠C.③∠E=∠F.从中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.
已知:________ ;
结论:________ ;
理由:________.
问题情境:如图1,在等边△ABC中,点P在△ABC内,且PA=3,PB=5,PC=4,求∠APC的度数?
小明在解决这个问题时,想到了以下思路:如图2,把△APC绕着点A顺时针旋转,使点C旋转到点B,得到△ADB,连结DP.
请你在小明的思路提示下,求出∠APC的度数.
思路应用:如图3,△ABC为等边三角形,点P在△ABC外,且PA=6,PC=8,∠APC=30°,求PB的长;
思路拓展:如图4,矩形ABCD中,AB=BC,P为矩形ABCD内一点,PA:PB:PC=2:1:2,则∠APB= °.(直接填空)
如图,在△ABC中,AB>AC,分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD,若AB=7,AC=5,则△ACD的周长为( )
A. 2 B. 12 C. 17 D. 19
﹣的绝对值为( )
A. ﹣2018 B. ﹣ C. D. 2018
若点N(a+5,a+2)在y轴上,则N点的坐标为________.
点M到x轴的距离为3,到y的距离为4,则点M的坐标为
A、(3,4)
B、(4,3)
C、(4,3),(-4,3)
D、(4,3),(-4,3),(-4,-3),(4,-3)
为了加强公民的节水意识,合理利用水资源.某市采用价格调控手段达到节约用水的目的,规定每户每月用水不超过6立方米时,按其本价格收费,超过6立方米时,超过的部分要加价收费,该市某户居民今年4、5月份的用水量和水费如下表所示,则用水收费的两种价格为不超过6立方米时每m3收_______元,超过6立方米时,超过的部分每m3收_______元.表格如下:
如图所示的支架是由两个长方体构成的组合体,则它的主视图是( )
A. B. C. D.