题目内容

某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.

(1)若该公司当月售出3部汽车,则每部汽车的进价为 万元;

(2)如果汽车的售价为28万元/部,该公司计划当月返利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)

 

(1)24.78;(2)6.

【解析】

试题分析:分析:(1)根据若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出4部汽车时,则每部汽车的进价为:27-0.1×2,即可得出答案;

(2)利用设需要售出x部汽车,由题意可知,每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.

试题解析:(1)∵若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,

∴若该公司当月售出3部汽车,则每部汽车的进价为:27-0.1×(4-1)=24.78,

(2)设需要售出x部汽车,

由题意可知,每部汽车的销售利润为:

28-[27-0.1(x-1)]=(0.1x+0.9)(万元),

当0≤x≤10,

根据题意,得x•(0.1x+0.9)+0.5x=12,

整理,得x2+14x-120=0,

解这个方程,得x1=-20(不合题意,舍去),x2=6,

当x>10时,

根据题意,得x•(0.1x+0.9)+x=12,

整理,得x2+19x-120=0,

解这个方程,得x1=-24(不合题意,舍去),x2=5,

因为5<10,

所以x2=5舍去.

答:需要售出6部汽车.

考点:一元二次方程的应用 .

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网