题目内容
(本题满分14分)解下列不等式(组)
(1)
(2)
(2分)如果分式的值为零,那么x= .
(6分)解不等式组:
下列语句中,属于定义的是( )
A.两点确定一条直线
B.两直线平行,同位角相等
C.两点之间线段最短
D.直线外一点到直线的垂线段的长度,叫做点到直线的距离
(本题满分12分)如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0, a),C(b,0)满足。
(1)则C点的坐标为__________;A点的坐标为__________.
(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使,若存在,请求出t的值;若不存在,请说明理由.
(3)点F是线段AC上一点,满足∠FOC=∠FCO, 点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H, 当点E在线段OA上运动的过程中,的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由.
为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这个样本的容量(即样本中个体的数量)是_____________.
根据图中提供的信息,可知一个杯子的价格是( ).
A.51元 B.35元 C.8元 D.7元
已知菱形ABCD的两条对角线分别长6和8,则它的面积是 .
(14分)如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD是∠ACB的角平分线,点E、F分别是边AC、BC上的动点.AB=,设AE=x,BF=y.
(1)AC的长是 ;
(2)若x+y=3,求四边形CEDF的面积;
(3)当DE⊥DF时,试探索x、y的数量关系.