题目内容
商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是 ;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
(1).(2). 【解析】(1)∵商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同, ∴他去买一瓶饮料,则他买到奶汁的概率是: , 故答案为:0.25 ; (2)画树状图得:(可以用字母代替) 12种情况需列举出来 ∵共有12种等可能的结果,他恰好买到雪碧和奶汁的有2种情况,(雪,奶),(奶,雪) ∴他恰...已知抛物线经过三点A(2,6)、B(-1,0)、C(3,0).
求这条抛物线所对应的二次函数的解析式;
(2)写出它的对称轴和顶点坐标.
查看答案如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+4上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为____.
![]()
如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是__________(结果保留
)
![]()
如图,反比例函数
和正比例函数y2=k2x 的图象交于A(-1,-3)、B(1,3)两点,若
>k2x,则x的取值范围是___________________.
![]()
已知点A(-1,y1)、B(2,y2)都在双曲线y=
上,且y1>y2,则m的取值范围是______________
- 题型:解答题
- 难度:中等
己知拋物线y=x2﹣2x﹣3,当﹣2≤x≤0时,y的取值范围是____________
-4≤y≤5 【解析】y=x2﹣2x﹣3=(x-1)2-4, x=1时最小值是-4,把x=-2代入抛物线,y=5是最大值. 所以-4≤y≤5.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是______.
查看答案如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:
①abc<0;
②2a﹣b=0;
③4a+2b+c<0;
④若(﹣5,y1),(
,y2)是抛物线上两点,则y1>y2.
其中说法正确的是( )
![]()
A. ①② B. ②③ C. ①②④ D. ②③④
查看答案如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是( )
![]()
A. (10π﹣
)米2 B. (π﹣
)米2 C. (6π﹣
)米2 D. (6π﹣
)米2
现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为 度
A. 18 B. 30 C. 45 D . 60
查看答案在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是( )
![]()
A. 点A B. 点B C. 点C D. 点D
查看答案 试题属性- 题型:填空题
- 难度:中等
如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.
(1)求证:△ABD∽△CBE;
(2)若BD=3,BE=2,求AC的值.
![]()
水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤.通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低
元,则每天的销售量是__________斤(用含
的代数式表示);
(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
查看答案如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到E,使DE=AB.
(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.
![]()
如图,在菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
(1)求证:四边形CODE是矩形.
(2)若AB=5,AC=6,求四边形CODE的周长.
![]()
如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.
![]()
(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.
(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.
查看答案在一次朋友聚餐中,有A、B、C、D四种素菜可供选择,小明从中选择一种,小莉也从中选择一种(与小明选择的不相同),请利用列表或树状图的方法求出A与B两种素菜被选中的概率.
查看答案 试题属性- 题型:解答题
- 难度:中等
桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )
![]()
A.
B.
C.
D. ![]()
以下判定正确的是( )
A. 若AB⊥BC,则
ABCD是菱形 B. 若AC⊥BD,则
ABCD是正方形
C. 若AC=BD,则
ABCD是矩形 D. 若AB=AD,则
ABCD是正方形
如图是同一时刻学校里一棵树和旗杆的影子,如果树高为3米,测得它的影子长为1.2米,旗杆的高度为5米,则它的影子长为( )
![]()
A. 4米 B. 2米 C. 1.8米 D. 3.6米
查看答案关于
的一元二次方程
的常数项为0,则
的值等于( )
A. 1 B. 2 C. 0或1 D. 0
查看答案下列各组线段(单位:cm)中,成比例线段的是 ( )
A. 1、2、3、4 B. 1、2、2、4 C. 3、5、9、13 D. 1、2、2、3
查看答案准备两组相同的牌,每组两张且大小相同,两张牌的牌面数字分别是0,1,从每组牌中各摸出一张牌,两张牌的牌面数字和为1的概率为( )
A.
B.
C.
D. ![]()
- 题型:单选题
- 难度:简单
已知一次函数y= kx+b的图象与反比例函数
的图象相交于A,B两点, 其中A点的横坐标与B点的纵坐标都是2,如图:
(1)求这个一次函数的解析式;
(2)在y轴是否存在一点P使△OAP为等腰三角形?若存在,请求出符合条件的点P坐标;若不存在,请说明理由.
![]()
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)求证:△COD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由.
![]()
一次函数y=kx+b的图象与反比例函数y=
的图象交于点A(2,1),B(-1,n)两点.
(1)求反比例函数的解析式;
(2)求一次例函数的解析式;
(3)求△AOB的面积.
![]()
如图所示, 有一建筑工地从10m 高的窗A处用水管向外喷水,喷出的水呈抛物线状,如果抛物线的最高点M 离墙1m,离地面
m.
(1)求抛物线的解析式;
(2)求水流落地点B离墙的距离OB.
![]()
如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;
(2)求证:DE为⊙O的切线.
![]()
商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.
(1)若他去买一瓶饮料,则他买到奶汁的概率是 ;
(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.
查看答案 试题属性- 题型:解答题
- 难度:困难
已知点A(-1,y1)、B(2,y2)都在双曲线y=
上,且y1>y2,则m的取值范围是______________
若抛物线y=x2-2x-3与x轴分别交于A,B两点,则AB的长为 ______.
查看答案直线y=x+3上有一点P(3,a),则点P关于原点的对称点
为___________.
如图,两个反比例函数
和
的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则△PAB的面积为( )
![]()
A. 3 B. 4 C.
D. 5
如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
查看答案某同学在用描点法画二次函数y=
+bx+c的图象时,列出了下面的表格:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | ﹣11 | ﹣2 | 1 | ﹣2 | ﹣5 | … |
由于粗心,他算错了其中一个y值,则这个错误的数值是( ).
A.﹣11 B.﹣2 C.1 D.﹣5
查看答案 试题属性- 题型:填空题
- 难度:中等
已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=
在同一平面直角坐标系中的图象大致是( )
![]()
如图,正方形ABCD内接于⊙O,⊙O的直径为
分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( ).
![]()
A.
B.
C.
D.![]()
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为( )
![]()
A.6 B.5 C.4 D.3
查看答案反比例函数
图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是( )
A. y2<y1<y3 B. y1<y2<y3 C. y3<y1<y2 D. y3<y2<y1
查看答案一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )
A.
B.
C.
D. ![]()
如图,⊙O是△ABC的外接圆,∠OCB=40°则∠A的度数等于( )
![]()
A. 60° B. 50° C. 40° D. 30°
查看答案 试题属性- 题型:单选题
- 难度:中等
下列各式①y=0.5x﹣2;②y=|2x|;③3y+5=x;④y2=2x+8中,y是x的函数的有_______ (只填序号)
①②③ 【解析】试题解析:①y=0.5x﹣2;②y=|2x|;③3y+5=x,y是x的函数, 故答案为:①②③.看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代换)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
![]()
为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.
查看答案一次函数y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P和点Q,若点P与点Q关于x轴对称,则m=________
查看答案如图,在△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数是______.
![]()
如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=60°,∠A=68°,AB=13cm,则∠F= ______度,DE= ____cm.
![]()
- 题型:填空题
- 难度:简单
怎样才能把一行树苗栽直?请你想出办法,并说明其中的道理.
两点确定一条直线 【解析】试题分析:利用直线的性质分析得出答案. 试题解析:首先确定两端点的树苗位置,即可确定所有树苗的位置, 理由是:两点确定一条直线.小明和小亮在讨论“射击时为什么枪管上要准星?”
小明:过两点有且只有一条直线,所以枪管上要有准星.
小亮:若将人眼看成一点,准星看成一点,目标看成一点,这不就有三点了吗?多了一个点呀!
请你说说你的观点.
查看答案下面两个圆圈分别表示负数集合和整数集合,请在这两个圆圈内各填入六个数,其中有三个数既在负数集合内,又在整数集合内.这三个数应填在哪里?你能说出这两个圆圈的重叠部分表示什么数的集合吗?
![]()
已知x+12平方根是±
,2x+y﹣6的立方根是2,求3xy的算术平方根.
已知:|a﹣1|+|b+2|=0,求2a+b的值.
查看答案如图,一个正五棱柱的底面边长为2cm,高为4cm。
![]()
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有
的代数式表示
棱柱的顶点数、面数、与棱的条数。
- 题型:解答题
- 难度:简单