题目内容
先化简,再求值:(m+2﹣)• ,其中m=﹣.
一个数学游戏,正六边形被平均分为6格(其中1格涂有阴影),规则如下:若第一个正六边形下面标的数字为a(a为正整数),则先绕正六边形的中心顺时针旋转a格;再沿某条边所在的直线l翻折,得到第二个图形。例如:若第一个正六边形下面标的数字为2,如图,则先绕其中心顺时针旋转2格;再沿直线l翻折,得到第二个图形。若第一个正六边形下面标的数字为4,如图,按照游戏规则,得到第二个图形应是( )
A. B. C. D.
如图,四边形ABCD中,AD∥BC,点E是边AD的中点,连接BE并延长交CD的延长线于点F,交AC于点G.
(1)若FD=2, ,求线段DC的长;
(2)求证:EF·GB=BF·GE.
如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )
如图,△ABC中,以BC为直径的⊙O交AB于点D,AE平分∠BAC交BC于点E,交CD于点F.且CE=CF.
(1)求证:直线CA是⊙O的切线;
(2)若BD=DC,求的值.
圆锥的底面半径为2,母线长为6,则它的侧面积为_____.
关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是( )
A. ﹣6 B. ﹣3 C. 3 D. 6
如图,是由四个直角边分别是2和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是_____________.
已知:如图,直线y=kx+2与x轴正半轴相交于A(t,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A和点B,点C在第三象象限内,且AC⊥AB,tan∠ACB=.
(1)当t=1时,求抛物线的表达式;
(2)试用含t的代数式表示点C的坐标;
(3)如果点C在这条抛物线的对称轴上,求t的值.