题目内容
已知圆锥的底面半径为4cm,母线长为3cm,则圆锥的侧面积是 ( )
A.15 B.15π C.12 D.12π
计算:
已知圆锥的底面半径为1cm,母线长为3cm,则其侧面积为 ( )
A.π B.3π C.4π D.7π
如图,点C、D分别在⊙O的半径OA、OB的延长线上,且OA=6,AC=4,CD平行于AB,并与AB相交于MN两点.若tan∠C=,则CN的长为 .
已知二次函数y=-2ax+-2.当-1≤x≤2时,函数有最小值2,则满足条件的a有( )
A.2个 B.3个 C.4个 D.5个
(满分12分)如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.
(1)求线段BC的长;
(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;
(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.
(满分8分)先化简,再求值:,其中.
如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得
S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由.
(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.
如图所示,菱形ABCD中,对角线AC、BD相交于点O,H为AD边的中点,菱形ABCD的周长为28,则OH的长等于( )
A.3.5 B.4 C.7 D.14