题目内容
如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.
(1)Rt△ADE与Rt△BEC全等吗?请写出必要的推理过程;
(2)△CED是不是直角三角形?请说明理由;
(3)若已知AD=6,AB=14,请求出请求出△CED的面积.![]()
(1)Rt△ADE≌Rt△BEC;
理由如下:
∵∠1=∠2,
∴DE=CE,又∠A=∠B=90°,AE=BC
∴在Rt△ADE和Rt△BEC中,
DE=CE、AE=BC,
∴Rt△ADE≌Rt△BEC;
(2))△CDE是直角三角形;
理由如下:
∵Rt△ADE≌Rt△BEC,
∴∠AED=∠BCE,∠ADE=∠BEC,
又∵∠AED+∠ADE=90°,∠BEC+∠BCE=90°,
∴2(∠AED+∠BEC)=180°,
∴∠AED+∠BEC=90°,
∴∠DEC=90°,
∴△CDE是直角三角形;
(3)已知AD=BE=6,
∴AE=AB﹣BE=AB﹣AD=14﹣6=8,
在Rt△ADE中,
DE=
=
=10,
又∠1=∠2,
∴DE=CE=10,
再由(2)得:
△CED的面积为:
DE•CE=
×10×10=50.
所以△CED的面积为:50.
解析
练习册系列答案
相关题目