题目内容

(2005•广州)如图,在直径为6的半圆上有两动点M、N,弦AM、BN相交于点P,则AP•AM+BP•BN的值为   
【答案】分析:连接AN、BM,根据圆周角定理,由AB是直径,可证∠AMB=90°,由勾股定理知,BP2=MP2+BM2,由相交弦定理知,AP•PM=BP•PN,原式=AP(AP+PM)+BP(BP+PN)=AP2+AP•PM+BP2+BP•PN=AP2+BP2+2AP•PM=AP2+MP2+BM2+2AP•PM=AP2+(AP+PM)2=AP2+AM2=AB2=36.
解答:解:连接AN、BM,
∵AB是直径,
∴∠AMB=90°.
∴BP2=MP2+BM2
∵AP•PM=BP•PN
原式=AP(AP+PM)+BP(BP+PN)=AP2+AP•PM+BP2+BP•PN
=AP2+BP2+2AP•PM
=AP2+MP2+BM2+2AP•PM
=BM2+(AP+PM)2=BM2+AM2=AB2=36.
点评:本题利用了圆周角定理和相交弦定理,勾股定理求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网