题目内容
【题目】如图,在7×7网格中,每个小正方形的边长都为1.
![]()
(1)建立适当的平面直角坐标系,使点A(3,4)、C(4,2),则点B的坐标为 ;
(2)求图中格点△ABC的面积;
(3)判断格点△ABC的形状,并说明理由.
(4)在x轴上有一点P,使得PA+PC最小,则PA+PC的最小值是 .
【答案】(1)(0,0);(2)5;(3)△ABC是直角三角形,理由见解析;(4)![]()
【解析】
(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;
(2)利用矩形的面积减去三个直角三角形的面积求解;
(3)利用勾股定理的逆定理即可作出判断;
(4)作点C关于x轴的对称点C′连接AC′交x轴与点P,连接PC,依据轴对称图形的性质可得到PC=PC′,然后依据两点之间线段最短可知当点A,P,C′在一条直线上时,AP+PC有最小值.
解:(1)B的坐标是(0,0).
故答案是(0,0);
(2)S△ABC=4×4﹣
×4×2﹣
×3×4﹣
×1×2=5,
(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,
∴AC2+BC2=AB2,
∴△ABC是直角三角形.
(4)如图1所示:作点C关于x轴的对称点C′连接AC′交x轴与点P,连接PC.
![]()
∵点C与点C′关于x轴对称,
∴PC=PC′.
∴AP+PC=AP+PC.
∴当A,P,C′在一条直线上时,AP+PC有最小值,最小值为AC′的长.
∵AC′=
=
.
∴AP+PC的最小值为
.
故答案为:
.
【题目】小华是花店的一名花艺师,她每天都要为花店制作普通花束和精致花束,她每月工作20天,每天工作8小时,她的工资由基本工资和提成工资两部分构成,每月的基本工资为l800元,另每制作一束普通花束可提2元,每制作一束精致花束可提5元.她制作两种花束的数量与所用时间的关系见下表:
制作普通花束(束) | 制作精致花束(束) | 所用时间(分钟) |
10 | 25 | 600 |
15 | 30 | 750 |
请根据以上信息,解答下列问题:
(1)小华每制作一束普通花束和每制作一束精致花束分别需要多少分钟?
(2)2019年11月花店老板要求小华本月制作普通花束的总时间
不少于3000分钟且不超过5000分钟,则小华该月收入
最多是多少元?此时小华本月制作普通花束和制作精致花束分别是多少束?