题目内容
【题目】如图,点C在线段AB上,过点C作CD⊥AB,点E,F分别是AD,CD的中点,连结EF并延长EF至点G,使得FG=CB,连结CE,GB,过点B作BH∥CE交线段EG于点H.
(1)求证:四边形FCBG是矩形.
(2)己知AB=10,
.
①当四边形ECBH是菱形时,求EG的长.
②连结CH,DH,记△DEH的面积为S1, △CBH的面积为S2.若EG=2FH,求S1+S2的值.
![]()
【答案】(1)证明见解析 (2)①
②16或![]()
【解析】
(1)由EF是中位线,得EF平行AB,即FG平行CB,已知FG=CB,由一组对边平行且相等得四边形FCBG是平行四边形,又因为CD垂直AB,则四边形FCBG是矩形.
(2)①因为EF平行AC,根据平行列比例式,设EF为3x, 由中位线性质,直角三角形的中线的性质,四边形ECBH是菱形等条件,通过线段的长度转化,最终把AC和BC用含x的关系式表示,由AB=8,列方程,求出x, 把EG也用含x的代数式表示,代入x值,即可求出EG的长.
②由EF是△ACD的中位线,得DF=CF,根据同底等高三角形面积相等,得△DEH和△CEH的面积相等,因为四边形CEHB是平行四边形,所以△CEH的面积和△BCH的面积相等,得到关系式:S1+S2=2S2,由EF+FH=FH+HG,得EF=HG,结合已知EG=2FH,得FH=2FG,设EF等于a, 把有关线段用含a的代数式表示,分两种情况,即点H在FG上和点H在EF上,根据AB=10列关系式,求出a的值,再把S2用含a的代数式表示,代入a值即可.
(1)∵EF即是△ADC的中位线,
∴EF∥AC,即FG∥CB.
∵FG=CB,
∴四边形FCBG是平行四边形.
∵CD⊥AB,即∠FCB=90°,
∴四边形FCBG是矩形.
(2)解:①∵EF是△ADC的中位线,
∴EF=
AC,DF=
CD,
∴
∴可设EF=3x,则DF=CF=4x,AC=6x.
∵∠EFC=90°,
∴CE=5x.
∵四边形ECBH是菱形,
∴BC=EC=5x,
∴AB=AC+CB=6x+5x=10,
∴x=![]()
∴EG=EF+FG=EF+BC=3x+5x=8x=
;
②∵EH∥BC,BH∥CE,
∴四边形ECBH是平行四边形,
∴EH=BC,
又∵DF=CF,
∴S△DEH=S△CEH ,
∵四边形ECBH是平行四边形,
∴S△CEH=S△BCH
∴S1+S2=2S2 .
∵EH=BC=FG,
∴EF=HG.
当点H在线段FG上时,如图,
![]()
设EF=HG=a,∵EG=2FH,
∴EG=2FH=4a,AC=2EF=2a,
∴BC=FG=3a.
∴AB=AC+C=2a+3a=10,
∴a=2.
∵FC=
AC=
a,
∴S1+S2=2S2=2×
×3a×
a=4a2=16.
当点H在线段EF上时,如图.
![]()
设EH=FG=a,则HF=2a.
同理可得AC=6a,BC=a,FC=4a,
∴AB=6a+a=10,
∴a= ![]()
∴S1+S2=2S2=2×
×a×4a=4a2=
.
综上所述,S1+S2的值是16或
.
【题目】一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:
成绩(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲组(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙组(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)请你根据上述统计数据,把下面的图和表补充完整;
![]()
一分钟投篮成绩统计分析表:
统计量 | 平均分 | 方差 | 中位数 | 合格率 | 优秀率 |
甲组 | 2.56 | 6 | 80.0% | 26.7% | |
乙组 | 6.8 | 1.76 | 86.7% | 13.3% |
(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.
![]()