题目内容
如图,点
在抛物线
上,过点
作与
轴平行的直线交抛物线于点
,延长
分别与抛物线
相交于点
,连接
,设点
的横坐标为
,且
.
(1).当
时,求点
的坐标;
(2).当
为何值时,四边形
的两条对角线互相垂直;
(3).猜想线段
与
之间的数量关系,并证明你的结论.
解:(1)
点
在抛物线
上,且
,
,······························ 1分
点
与点
关于
轴对称,
.························································ 2分
设直线
的解析式为
,
.······················································································· 3分
解方程组
,得
.································································· 4分
(2)当四边形
的两对角线互相垂直时,由对称性得直线
与
轴的夹角等于
所以点
的横、纵坐标相等, 5分
这时,设
,代入
,得
,
.
即当
时,四边形
的两条对角线互相垂直.········································· 6分
(3)线段
.········································································································ 7分
点
在抛物线
,且
,
得直线
的解析式为
,
解方程组
,得点
······················································· 8分
由对称性得点
,··················································· 9分
,
. 10分
解析:略