题目内容
12.| A. | (-3-$\sqrt{3}$,3) | B. | (-3-$\sqrt{3}$,3$\sqrt{3}$) | C. | (-$\sqrt{3}$,3) | D. | (-$\sqrt{3}$,3$\sqrt{3}$) |
分析 过点B作BD⊥OD于点D,根据△ABC为直角三角形可证明△BCD∽△COA,设点B坐标为(x,y),根据相似三角形的性质即可求解.
解答 解:
过点B作BD⊥OD于点D,
∵△ABC为直角三角形,
∴∠BCD+∠CAO=90°,
∴△BCD∽△COA,
∴$\frac{BD}{CD}=\frac{CO}{AO}$,
设点B坐标为(x,y),
则$\frac{y}{-x-3}$=$\frac{3}{1}$,
y=-3x-9,
∴BC=$\sqrt{(-x-3)^{2}+{y}^{2}}$=$\sqrt{10{x}^{2}+60x+90}$,
AC=$\sqrt{1+{3}^{2}}$,
∵∠B=30°,
∴$\frac{AC}{BC}$=$\frac{\sqrt{10}}{\sqrt{10{x}^{2}+60x+90}}$=$\frac{\sqrt{3}}{3}$,
解得:x=-3-$\sqrt{3}$,
则y=3$\sqrt{3}$.
即点B的坐标为(-3-$\sqrt{3}$,3$\sqrt{3}$).
故选B.
点评 本题考查了全等三角形的判定与性质以及坐标与图形的性质,解答本题的关键是作出合适的辅助线,证明三角形的相似,进而求解.
练习册系列答案
相关题目
2.
如图,已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长度为( )
| A. | 4$\sqrt{5}$cm | B. | 3$\sqrt{5}$cm | C. | 2$\sqrt{5}$cm | D. | $\sqrt{5}$cm |