题目内容

如图,分别以RtABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30º,EFAB,垂足为F,连结DF

(1)求证:ACEF
(2)求证:四边形ADFE是平行四边形.

(1)∵在等边△ABE中,EF⊥AB,
∴AF= AE= AB,
又∵Rt△ABC,∠BAC=30º,
∴BC=AB,
∴BC=AF
∴Rt△ABC∽Rt△EAF(AAS)
即AC=EF
(2)因为EF⊥AB,∴,∠AFE=90
∵△ACD是等边三角形,∴∠DAC=60,∴∠DAB=90
∵∠AFE=∠DAB,∴AD//EF
∵∠BAC=30,∴CB=AB
∵EF⊥AB,∴AF=AB=CB
∵AF=CB.AD=AC,∠DAB=∠ACB=90
∴Rt△ABC∽Rt△DFA
∴∠ADF=∠CAB=30
∵∠DAB+∠BAE=90+60=150
∴∠ADF+∠DAE=180
∴AE//DF
∴四边形ADFE是平行四边形

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网