题目内容
点p是反比例函数y=
上的一点,PD⊥x轴于点D,则△POD的面积为2,则k=________.
-4
分析:根据反比例函数y=
(k≠0)系数k的几何意义得到
|k|=2,解得k=±4,然后根据反比例函数的性质确定满足条件的k的值.
解答:∵△POD的面积为2,
∴
|k|=2,解得k=±4,
∵反比例函数图象在第二、四象限,
∴k<0,
∴k=-4.
故答案为-4.
点评:本题考查了反比例函数y=
(k≠0)系数k的几何意义:从反比例函数y=
(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.
分析:根据反比例函数y=
解答:∵△POD的面积为2,
∴
∵反比例函数图象在第二、四象限,
∴k<0,
∴k=-4.
故答案为-4.
点评:本题考查了反比例函数y=
练习册系列答案
相关题目