题目内容
如图,EF∥CD,∠1=∠2,求证:DG∥BC.
一次数学课上,小明同学给小刚同学出了一道数形结合的综合题,他是这样出的:如图,数轴上两个动点 M,N 开始时所表示的数分别为﹣10,5,M,N 两点各自以一定的速度在数轴上运动,且 M 点的运动速度为2个单位长度/s.
(1)M,N 两点同时出发相向而行,在原点处相遇,求 N 点的运动速度.
(2)M,N 两点按上面的各自速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?
(3)M,N 两点按上面的各自速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发沿同方向运动,且在运动过程中,始终有 CN:CM=1:2.若干秒后,C 点在﹣12 处,求此时 N 点在数轴上的位置.
如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于( )
A. 50° B. 30° C. 20 D. 15°
如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为( )
A. 140° B. 130° C. 120° D. 110°
若4x2+mxy+9y2是一个完全平方式,则m=( )
A. 6 B. 12 C. ±6 D. ±12
规定:用{m}表示大于m的最小整数,例如{}=3,{5}=6,{﹣1.3}=﹣1等;用[m]表示不大于m的最大整数,
例如[]=3,[4]=4,[﹣1.5]=﹣2,如果整数x满足关系式:2{x}+3[x]=12,则x=_____.
一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为( )
A. 40° B. 45° C. 50° D. 10°
某通讯公司推出了①②两种收费方式,收费y1,y2 (元)与通讯时间x(分钟)之间的函数关系如图所示,则使不等式kx+30<x成立的x的取 值范围是 .
如图,△ABC的顶点都在方格线的交点(格点)上.
(1)将△ABC绕C点按逆时针方向旋转90°得到△A′B′C′,请在图中画出△A′B′C′;
(2)将△ABC向上平移1个单位,再向右平移5个单位得到△A″B″C″,请在图中画出△A″B″C″;
(3)若将△ABC绕原点O旋转180°,A的对应点A1的坐标是 .