题目内容
一个盒子装有除颜色外其它均相同的2个红球和1个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为().
A. B. C. D.
如图,抛物线y=ax2+bx经过A(2,0),B(3,-3)两点,抛物线的顶点为C,动点P在直线OB上方的抛物线上,过点P作直线PM∥y轴,交x轴于M,交OB于N,设点P的横坐标为m.
(1)求抛物线的解析式及点C的坐标;
(2)当△PON为等腰三角形时,点N的坐标为 ;当△PMO∽△COB时,点P的坐标为 ;(直接写出结果)
(3)直线PN能否将四边形ABOC分为面积比为1:2的两部分?若能,请求出m的值;若不能,请说明理由.
关于的函数和在同一坐标系中的图像大致是( )
如图,在反比例函数y=的图象上有一动点,连接并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图象上运动, ,则关于的解为___________.
若整数同时满足不等式与,则该整数x是( ).
A. 1 B. 2 C. 3 D. 2和3
在正方形 ABCD 中,点 P 在射线 AB 上,连结 PC,PD,M,N 分别为 AB,PC 中点,连结 MN 交 PD 于点 Q.
(1)如图 1,当点 P 与点 B 重合时,求∠QMB 的度数;
(2)当点 P 在线段 AB 的延长线上时.
①依题意补全图2
②小聪通过观察、实验、提出猜想:在点P运动过程中,始终有QP=QM.小聪把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1延长BA到点 E,使AE=PB .要证QP=QM,只需证△PDA≌△ECB.
想法2:取PD 中点E ,连结NE,EA. 要证QP=QM只需证四边形NEAM 是平行四边形.
想 法3:过N 作 NE∥CB 交PB 于点 E ,要证QP=QM ,只要证明△NEM∽△DAP.
……
请你参考上面的想法,帮助小聪证明QP=QM. (一种方法即可)
如图,直线与x轴交于点A(1,0),与 y交于点B(0,-2).
(1)求直线AB的表达式;
(2)点C是直线AB上的点,且CA=AB,过动点P(m,0)且垂直于x轴的直线与直线AB 交于点D,若点D不在线段BC上,写出m的取值范围.
下列图形中不是轴对称图形的是
已知a,b为两个连续整数,且a<<b,则a+b=__.