题目内容
分析:先根据角平分线的性质得出∠ABE=
∠ABC,∠BAD=
∠BAC,∠BCF=
∠BCA,再代入∠BID=∠ABE+∠BAD即可得出∠BID=90°-∠GCI,根据ID⊥BC可得到∠CIG=90°-∠GCI,故可得出结论.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:∠1=∠2.
理由:∵BE、AD、CF是角平分线
∴∠ABE=
∠ABC,∠BAD=
∠BAC,∠BCF=
∠BCA,
∴∠BID=∠ABE+∠BAD
=
∠ABC+
∠BAC
=
(∠ABC+∠BAC)
=
(180°-∠ACB)
=90°-
∠ACB
=90°-∠BCF
=90°-∠GCI
∵ID⊥BC
∴∠CIG=90°-∠GCI
∴∠BID=∠CIG,即∠1=∠2.
理由:∵BE、AD、CF是角平分线
∴∠ABE=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴∠BID=∠ABE+∠BAD
=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
=
| 1 |
| 2 |
=90°-
| 1 |
| 2 |
=90°-∠BCF
=90°-∠GCI
∵ID⊥BC
∴∠CIG=90°-∠GCI
∴∠BID=∠CIG,即∠1=∠2.
点评:本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
练习册系列答案
相关题目