题目内容

(本题满分11分)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB.

(1)求B、C两点的坐标;

(2)请在图①中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;

(3)动直线从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?请说明理由.

 

(1)B(﹣3,0),C(1,0);(2)作图见试题解析,四边形ACMB是矩形,M(﹣2,);(3)不变,理由见试题解析.

【解析】

试题分析:(1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.

(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MH⊥BC,垂足为H,易证△MHP≌△AOP,从而求出MH、OH的长,进而得到点M的坐标.

(3)易证点E、M、B、G在以点Q为圆心,QB为半径的圆上,从而得到∠MQG=2∠MBG.易得∠OCA=60°,从而得到∠MBG=60°,进而得到∠MQG=120°,所以∠MQG是定值.

试题解析:(1)连接PA,如图1所示.

∵PO⊥AD,∴AO=DO.∵AD=,∴OA=

∵点P坐标为(﹣1,0),∴OP=1,∴PA==2,∴BP=CP=2,∴B(﹣3,0),C(1,0);

(2)连接AP,延长AP交⊙P于点M,连接MB、MC.

如图2所示,线段MB、MC即为所求作.

四边形ACMB是矩形.

理由如下:∵△MCB由△ABC绕点P旋转180°所得,

∴四边形ACMB是平行四边形.

∵BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.

过点M作MH⊥BC,垂足为H,如图2所示.

在△MHP和△AOP中,

∵∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.

∴MH=OA=,PH=PO=1.∴OH=2.

∴点M的坐标为(﹣2,).

(3)在旋转过程中∠MQG的大小不变.

∵四边形ACMB是矩形,∴∠BMC=90°.

∵EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°.

∵点Q是BE的中点,∴QM=QE=QB=QG.

∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.

∴∠MQG=2∠MBG.

∵∠COA=90°,OC=1,OA=,∴tan∠OCA=,∴∠OCA=60°,∴∠MBC=∠BCA=60°,

∴∠MQG=120°,

∴在旋转过程中∠MQG的大小不变,始终等于120°.

考点:圆的综合题.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网