题目内容
计算下列各题:(1)
| 1 |
| x-1 |
| 1 |
| 1+x |
| 2 |
| x2+1 |
| 4 |
| x4+1 |
| 8 |
| x8+1 |
(2)
| 3x2+9x+7 |
| x+1 |
| 2x2-4x+3 |
| x-1 |
| x3+x+1 |
| x2-1 |
(3)
| b-c |
| a2-ab-ac+bc |
| c-a |
| b2-bc-ab+ac |
| a-b |
| c2-ac-bc+ab |
分析:(1)运用平方差公式分步通分;
(2)把每个假分式化成整式与真分式之和的形式;
(3)先将各分式拆项,再两两抵消即可得出结果.
(2)把每个假分式化成整式与真分式之和的形式;
(3)先将各分式拆项,再两两抵消即可得出结果.
解答:解:(1)
-
-
-
-
=
-
-
-
=
-
-
=
-
=
;
(2)
-
-
=(3x+6)+
-(2x-2)-
-x-
=8+
-
-
=8-
;
(3)
-
+
=
-
+
=
-
-
+
-
+
=-
.
| 1 |
| x-1 |
| 1 |
| 1+x |
| 2 |
| x2+1 |
| 4 |
| x4+1 |
| 8 |
| x8+1 |
=
| 2 |
| x2-1 |
| 2 |
| x2+1 |
| 4 |
| x4+1 |
| 8 |
| x8+1 |
=
| 4 |
| x4-1 |
| 4 |
| x4+1 |
| 8 |
| x8+1 |
=
| 8 |
| x8-1 |
| 8 |
| x8+1 |
=
| 16 |
| x16-1 |
(2)
| 3x2+9x+7 |
| x+1 |
| 2x2-4x+3 |
| x-1 |
| x3+x+1 |
| x2-1 |
=(3x+6)+
| 1 |
| x+1 |
| 1 |
| x-1 |
| 2x+1 |
| x2-1 |
=8+
| 1 |
| x+1 |
| 1 |
| x-1 |
| 2x+1 |
| x2-1 |
=8-
| 2x+3 |
| x2-1 |
(3)
| b-c |
| a2-ab-ac+bc |
| c-a |
| b2-bc-ab+ac |
| a-b |
| c2-ac-bc+ab |
=
| b-c |
| (a-b)(a-c) |
| c-a |
| (b-c)(b-a) |
| a-b |
| (c-a)(c-b) |
=
| 1 |
| a-b |
| 1 |
| a-c |
| 1 |
| b-c |
| 1 |
| a-b |
| 1 |
| a-c |
| 1 |
| b-c |
=-
| 2 |
| a-c |
点评:本题考查了分式的加减运算,难度较大.因各分式复杂,故须观察各式中分母的特点,恰当运用通分的相关策略与技巧.
练习册系列答案
相关题目