题目内容
分解因式:a-a3= .
如图,已知直线y=ax+b和直线y=kx交于点P(-4,-2),则关于x,y的二元一次方程组的解是 .
随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率是 .
如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60º得PC.
(1)当点P运动到线段OA的中点时, 点C的坐标为 ;
(2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标;
(3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.
如图,将一块直角三角板OAB放在平面直角坐标系中,B(1,0),∠OAB=30°,点A在第一象限,过点A的双曲线为y= ,在x轴上取一点P,过点P作直线OA的垂线,以直线为对称轴,线段OB经轴对称变换后的像是O′B′.
(1)当点O′与点A重合时,点P的坐标是 .
(2)设P(t,0)当O′B′与双曲线有交点时,t的取值范围是 .
一组数据:12,5,9,5, 14,下列说法不正确的是( )
A、平均数是9 B、中位数是9 C、众数是5 D、方差是12
点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.
利用数形结合思想回答下列问题:
(1)数轴上表示2和10两点之间的距离是_________,数轴上表示2和-10的两点之间的距离是______.
(2)数轴上表示x和-2的两点之间的距离表示为____________.
(3)若x表示一个有理数, |x-1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.
(4)若x表示一个有理数,求|x-1|+|x-2|+|x-3|+|x-4|+……+|x-2014|+|x-2015|的最小值.
已知,, 且 按照从小到大顺序排列___________________.(用“<”号连接)
如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△A’B’C’
(2)在直线l上找一点P(在图中标出),使PB+PC的长最短,这个最短长度是 .