题目内容
【题目】为了解某校学生的身高情况,随机抽取该校若干男生、女生进行抽样调查.已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计表和统计图(如图20-3-2所示):
身高情况分组表(单位:cm)
组别 | 身高 |
A | x<155 |
B | 155≤x<160 |
C | 160≤x<165 |
D | 165≤x<170 |
E | x≥170 |
![]()
根据图表提供的信息,回答下列问题:
(1)样本中,男生身高的众数在___________组,中位数在___________组;
(2)样本中,女生身高在E组的有___________人;
(3)已知该校共有男生400人、女生380人,请估计身高在160≤x<170范围内的学生约有多少人.
【答案】(1)B,C;(2)2;(3)332.
【解析】试题分析:(1)根据众数的定义,以及中位数的定义解答即可;
(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;
(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.
试题解析:
∵B组人数最多,
∴众数在B组,
男生总人数为4+12+10+8+6=40,
按照从低到高的顺序,第20、21两人都在C组,
∴中位数在C组,
故答案为:B、C;
(2)女生身高在E组的频率为:1-17.5%-37.5%-25%-15%=5%,
∵抽取的样本中,男生、女生的人数相同,
∴样本中,女生身高在E组的人数有40×5%=2人,
故答案为:2;
(3)400×
+380×(25%+15%)=180+152=332(人).
答:估计该校身高在160≤x<170之间的学生约有332人.
【题目】某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
频数分布表
分组 | 划记 | 频数 |
2.0<x≤3.5 | 正正 | 11 |
3.5<x≤5.0 |
| 19 |
5.0<x≤6.5 | ||
6.5<x≤8.0 | ||
8.0<x≤9.5 |
| 2 |
合计 | 50 |
![]()
(1)把上面频数分布表和频数分布直方图补充完整;
(2)从直方图中你能得到什么信息?(写出两条即可);
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?