题目内容

已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD. 
(1)AP=PD;
(2)请判断A,D,F三点是否在以P为圆心,以PD为半径的圆上?并说明理由;
(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
分析:(1)根据圆周角定理得出∠DAC=∠CBD,以及∠CBD=∠DBA可得出∠DAC=∠DBA,再由直角三角形的性质即可得出答案;
(2)首先得出∠ADB=90°,再根据∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°得出∠PDF=∠PFD,从而得出PA=PF;
(3)利用圆心角、弧、弦的关系定理得出AD=CD,进而利用勾股定理求出AB的长,以及利用直角三角形面积公式求出DE的长即可.
解答:(1)证明:∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA,
∵AB是⊙O的直径,DE⊥AB,
∴∠ADB=∠AED=90°,
∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,
∴∠ADE=∠DBA,
∴∠DAC=∠ADE,
∴PA=PD;

(2)解:A,D,F三点是在以P为圆心,以PD为半径的圆上.理由如下:
∵AB为直径,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,即P是线段AF的中点,
故A,D,F三点是在以P为圆心,以PD为半径的圆上;

(3)解:∵∠CBD=∠DBA,
∴CD=AD,
∵CD﹦3,∴AD=3,
∵∠ADB=90°,
∴AB=
AD2+BD2
=
32+42
=5,
故⊙O的半径为2.5,
∵DE×AB=AD×BD,
∴5DE=3×4,
∴DE=2.4.
即DE的长为2.4.
点评:本题考查的是圆周角定理和等腰三角形的性质以及勾股定理和三角形面积公式等知识,根据证明PD=PA以及PD=PF得出答案是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网