题目内容
若一个三角形的三条边长为别是2,2x-3,6,则x的取值范围是______.
某人用原价的八折价钱买一件上衣节省了20元,那么这件上衣的原价为( )
A.80元 B.100元 C.140元 D.160元
已知:二次函数y=2x2+bx+c过点(1,1)和点(2,10),求二次函数的解析式,并用配方法求二次函数图象的顶点坐标.
通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线。
根据___________,易证△AFG≌__________,得EF=BE+DF。请写出完整证明过程。
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°。
若∠B、∠D都不是直角,则当∠B与∠D满足等量关系_____________时,仍有EF=BE+DF。
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。
如图,是一组按照某种规律摆放而成的图案,则图6中三角形的个数是 .
某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )
A. 240元 B. 250元 C. 280元 D. 300元
﹣2的绝对值是( )
A. ﹣2 B. ﹣ C. 2 D.
如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=_____.
如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,点P的速度都是1cm/s,点Q的速度都是2cm/s当点P到达点B时,P、Q两点停止.当t=______________时,△PBQ是直角三角形.