题目内容

如果
x+3
2
-
x-7
6
与1-
2x+1
3
互为相反数,且x满足方程ax-3=a+x,求a的值.
考点:解一元一次方程,一元一次方程的解
专题:
分析:
x+3
2
-
x-7
6
与1-
2x+1
3
互为相反数,可得
x+3
2
-
x-7
6
+1-
2x+1
3
=0,解得x的值代入方程ax-3=a+x,求a的值即可.
解答:解:由题意得
x+3
2
-
x-7
6
+1-
2x+1
3
=0,
去分母,得3(x+3)-(x-7)+6-2(2x+1)=0
去括号,得3x+9-x+7+6-4x-2=0
移项,得3x-x-4x=-9-7-6+2
合并,得-2x=-20
系数化为1,得x=10,
把x=10代入ax-3=a+x得10a-3=a+10
解得a=
13
9
点评:本题考查了解一元一次方程以及一元一次方程的解,解一元一次方程常见的过程有去括号、移项、系数化为1等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网