题目内容

已知,如图,AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=


  1. A.
    150°
  2. B.
    30°
  3. C.
    120°
  4. D.
    60°
C
分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.
解答:∵直线AB∥CD,
∴∠CDB=∠ABD,
∵∠CDB=180°-∠CDE=30°,
∴∠ABD=30°,
∵BE平分∠ABC,
∴∠ABD=∠CBD,
∴∠ABC=∠CBD+∠ABD=60°,
∵AB∥CD,
∴∠C=180°-∠ABC=180°-60°=120°.
故选C.
点评:本题考查的是平行线、平角的定义以及角平分线的性质,比较简单.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网