题目内容

【题目】已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).
(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;
(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.

【答案】
(1)

∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,

∵抛物线经过原点,

∴0=a(0﹣1)2+2,

∴a=﹣2,

∴抛物线解析式为y=﹣2x2+4x


(2)

∵抛物线经过原点,

∴设抛物线为y=ax2+bx,

∵h=﹣

∴b=﹣2ah,

∴y=ax2﹣2ahx,

∵顶点A(h,k),

∴k=ah2﹣2ah,

抛物线y=tx2也经过A(h,k),

∴k=th2

∴th2=ah2﹣2ah2

∴t=﹣a,


(3)

∵点A在抛物线y=x2﹣x上,

∴k=h2﹣h,又k=ah2﹣2ah2

∴h=

∵﹣2≤h<1,

∴﹣2≤ <1,

①当1+a>0时,即a>﹣1时, ,解得a>0,

②当1+a<0时,即a<﹣1时, 解得a≤﹣

综上所述,a的取值范围a>0或a≤﹣


【解析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣ ,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.
【考点精析】通过灵活运用抛物线与坐标轴的交点,掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网