题目内容

如图,平面直角坐标系中有一正方形OABC,点C的坐标为(-2,-1),则点A坐标为
 
,点B坐标为
 
考点:正方形的性质,坐标与图形性质,全等三角形的判定与性质
专题:
分析:过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,根据点C的坐标求出OE、CE,再根据正方形的性质可得OA=OC=BC,再求出∠AOD=∠COE=∠BCF,然后求出△AOD、△COE、△BCF全等,根据全等三角形对应边相等可得AD=CE=BF,OD=OE=CF,然后求解即可.
解答:解:如图,过点A作AD⊥y轴于D,过点C作CE⊥x轴,过点B作BF⊥CE交CE的延长线于F,
∵C(-2,-1),
∴OE=2,CE=1,
∵四边形OABC是正方形,
∴OA=OC=BC,
易求∠AOD=∠COE=∠BCF,
又∵∠ODA=∠OEC=∠F=90°,
∴△AOD≌△COE≌△BCF,
∴AD=CE=BF=1,OD=OE=CF=2,
∴点A的坐标为(-1,2),EF=2-1=1,
点B到y轴的距离为1+2=3,
∴点B的坐标为(-3,1).
故答案为:(-1,2);(-3,1).
点评:本题考查了正方形的性质,全等三角形的判定与性质,坐标与图形性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网