题目内容
甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=3.5.则射击成绩比较稳定的是______(填“甲”或“乙“).
小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为 .
若有意义,则___________.
如图,已知反比例函数y=(k<0)的图象经过点A(-,2),过点A作AB⊥x轴于点B,连结AO.
(1)求k的值;
(2)如图,若直线y=ax+b经过点A,与x轴相交于点C,且满足S△ABC=2S△AOC.求:
①直线y=ax+b的表达式;
②记直线y=ax+b与双曲线y=(k<0)的另一交点为D(n,﹣1),试求△AOD的面积S△AOD以及使得不等式ax+b>成立的x的取值范围.
计算:(π﹣2016)0+()﹣1﹣×|﹣3|.
如图,水以恒速(即单位时间内注入水的体积相同)注入如图的容器中,容器中水的高度h与时间t的函数关系图象可能为( )
A. B. C. D.
化简分式,结果是( )
A. x﹣2 B. x+2 C. D.
函数自变量的取值范围是_________.
如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为E,射线EP交于点F,交过点C的切线于点D.
(1)求证:DC=DP;
(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.