题目内容


如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.

(1)请直接写出线段BE与线段CD的关系:   

(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),

①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;

②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.


解:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,

∴AB=AC,AE=AD,

∴AE﹣AB=AD﹣AC,

∴BE=CD;

(2)①∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,

∴AB=AC,AE=AD,

由旋转的性质可得∠BAE=∠CAD,

在△BAE与△CAD中,

∴△BAE≌△CAD(SAS),

∴BE=CD;

②∵以A、B、C、D四点为顶点的四边形是平行四边形,

∴∠ABC=∠ADC=45°,

∵AC=ED,

∴∠CAD=45°,

∴角α的度数是45°.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网